Indexed by:
Abstract:
The precipitation-hardened Sm-Co permanent magnets relied on the pinning of nanocellular structures to achieve high coercivity, and have an irreplaceable position in high-temperature applications. In this article, by employing micromagnetic simulations and magnetic domain observations, the pinning behavior of lamellar phases (Z-phase) were investigated, which has not been well understood before. The results showed that the Z-phase can serve as a strong pinning position, but due to the parallel lamellar distribution, the magnetic domain walls can move around. Additionally, the effect of Z-phase on coercivity was achieved by changing the morphology of magnetic domain walls during magnetization reversal. For attractive pinning, the coercivity was reduced by the Z-phase, while for repulsive pinning, the Z-phase increased the coercivity when γZ<0.54γH. Our findings can provide a novel understanding of the coercivity mechanism of precipitation-hardened Sm-Co permanent magnets. © 2024 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Alloys and Compounds
ISSN: 0925-8388
Year: 2024
Volume: 1009
6 . 2 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: