Indexed by:
Abstract:
Adopting the low-temperature hydrogen evaporated from the liquid hydrogen is capable of improving volumetric efficiency for the Wankel rotary engine (WRE). Considering the difficulty in ignition and slow flame propagation of low-temperature hydrogen-air mixtures, the passive pre-chamber is used to improve ignition and combustion. A three-dimensional computational fluid dynamics model for a turbulent jet ignition (TJI) WRE fueled by lowtemperature hydrogen was established. The effects of low temperature and TJI on the in-cylinder flow field, combustion, emissions and leakage in the TJI-WRE fueled by low-temperature hydrogen were studied under different ignition timings. The results indicated that low-temperature tends to suppress the flame propagation, whereas TJI can accelerate the flame speed and promote flame propagation to the unburned zone in the combustion chamber. Combining low-temperature hydrogen with the passive pre-chamber can achieve high engine thermal efficiency and power while significantly reducing leakage. With the ignition timing set at 18 degrees CA before the top dead center, the indicated thermal efficiency reached 39.49 % and the indicated mean effective pressure peaked at 0.77 MPa. Compared to the original engine, fresh mixture leakage through spark plug cavities and adjacent chambers was reduced by 72.13 % and 78.79 %, respectively.
Keyword:
Reprint Author's Address:
Email:
Source :
ENERGY
ISSN: 0360-5442
Year: 2024
Volume: 313
9 . 0 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: