Indexed by:
Abstract:
As unmanned aerial vehicles (UAVs) continue to play an increasingly critical role in reconnaissance missions, establishing dependable communication links between UAVs and ground stations has become imperative. Nevertheless, ensuring reliable communication remains a great challenge, particularly in environments characterized by weak signals or high levels of electromagnetic interference. To tackle this challenge, this study presents a design and optimization approach for a miniature UAV antenna. This antenna achieves significant performance improvements by optimizing the magnetic field distribution and convergence within its central section. Specifically with the aim of capturing and amplifying signals in a specified direction, the antenna enhances reception sensitivity, especially in challenging operational settings. The structure ensures robust and consistent signal reception with a maximum gain of up to 12.8 dB and a converging magnetic field magnitude of 2279 A/m at its center. Furthermore, it operates effectively within the C band, exhibiting a relative bandwidth of 12.2%. This capability empowers UAV to transmit reconnaissance data accurately and swiftly, regardless of the distance traveled or the complexity of the electromagnetic environment. This advancement not only enhances UAV capabilities but also opens new possibility for applications requiring dependable communication in diverse and demanding scenarios. © 2019 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE Journal on Miniaturization for Air and Space Systems
ISSN: 2576-3164
Year: 2024
Issue: 4
Volume: 5
Page: 265-273
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: