Abstract:
为进一步提高深度分类模型超参数多目标自适应寻优效率,提出一种筛选式增强Dropout代理(FEDA)模型.首先,构建点对互信息约束增强的双通道Dropout神经网络,增强对高维超参数深度分类模型的拟合,并结合聚集选解策略加速候选解集的选取;其次,设计一种结合模型管理策略的算法FEDA-ARMOEA(FEDA model-A novel preference-based dominance Relation for Multi-Objective Evolutionary Algorithm)均衡种群个体的收敛性和多样性,协助FEDA提高深度分类模型训练及超参数自优化效率.将FEDA-ARMOEA与EDN-ARMOEA(Efficient Dropout neural Network-assisted AR-MOEA)、HeE-MOEA(Heterogeneous Ensemble-based infill criterion for Multi-Objective Evolutionary Algorithm)等算法进行对比实验,实验结果表明,FEDA-ARMOEA在56组测试问题中的41组上表现较好.在工业应用焊缝数据集MTF和公共数据集CIFAR-10上实验,FEDA-ARMOEA优化的分类模型的精度分别达到96.16%和93.79%,训练时间相较于对比算法分别降低6.94%~47.04%和4.44%~39.07%,均优于对比算法,验证了所提算法的有效性和泛化性.
Keyword:
Reprint Author's Address:
Email:
Source :
计算机应用
ISSN: 1001-9081
Year: 2024
Issue: 10
Volume: 44
Page: 3021-3031
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 14
Affiliated Colleges: