Abstract:
为了提高相干信源条件下的离格波达方向(direction of arrival,DOA)估计精度,提出一种基于子空间模型的稀疏贝叶斯学习(sparse Bayesian learning,SBL)的DOA估计算法。该算法首先将子空间平滑(subspace smoothing,SS)技术与加权子空间拟合(weighted subspace fitting,WSF)技术结合,然后将此子空间模型应用于SBL算法,并将离散网格点视为动态参数,用期望最大化(expectation maximization,EM)算法迭代更新网格点位置。与传统稀疏恢复算法相比,该算法在估计误差及计算复杂度上均具有明显优势,并对信源数目的估计误差具有较强的鲁棒性。
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2024
Issue: 12
Page: 1421-1427
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 17
Affiliated Colleges: