Abstract:
随着科技的不断发展,自动驾驶技术越来越多地进入到人们的生活中。动态物体点云分割是其中十分关键的一项任务,它可以为地图构建、路径规划等任务提供前置帮助。本文提出一种基于编码器-解码器结构的激光雷达动态物体点云分割网络,使用自校正卷积替换上下文特征提取模块中的普通卷积,提升神经网络的特征学习能力;并在网络解码阶段加入通道注意力机制,提升网络对重要特征通道的关注学习程度,从而达成更好的分割效果。本文在SemanticKITTI MOS数据集上进行实验,实验结果表明,本文所提出的动态物体点云分割网络相比原有方法取得更优表现,交并比(IoU)达到72.1%。
Keyword:
Reprint Author's Address:
Email:
Source :
高技术通讯
Year: 2024
Issue: 10
Volume: 34
Page: 1091-1097
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: