Indexed by:
Abstract:
In this article, we consider the complete independence test of high-dimensional data. Based on Chatterjee coefficient, we pioneer the development of quadratic test and extreme value test which possess good testing performance for oscillatory data, and establish the corresponding large sample properties under both null hypotheses and alternative hypotheses. In order to overcome the shortcomings of quadratic statistic and extreme value statistic, we propose a testing method termed as power enhancement test by adding a screening statistic to the quadratic statistic. The proposed method do not reduce the testing power under dense alternative hypotheses, but can enhance the power significantly under sparse alternative hypotheses. Three synthetic data examples and two real data examples are further used to illustrate the performance of our proposed methods.
Keyword:
Reprint Author's Address:
Email:
Source :
STATISTICAL PAPERS
ISSN: 0932-5026
Year: 2025
Issue: 1
Volume: 66
1 . 3 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: