Indexed by:
Abstract:
Enhanced nitrogen removal by hydroxylamine (NH2OH) on anammox-related process recently received attention. This study investigated the impact of NH2OH on the partial-denitrification/anammox (PDA) biosystem. Results show that NH2OH (≤10 mg N/L) immediately induced nitrite accumulation and provided sufficient NO2– to anammox, achieving a 18.1 ± 4.3 % increase of nitrogen removal efficiency compared to the absence of NH2OH. Long-term exposure to NH2OH accelerated the functional microbial community transformation to PDA. Thauera was highly enriched (6.1 % → 26.9 %) along with Candidatus Brocadia increased in the biofilms, which mainly favor the coupling process of nitrate reduction and anammox. Although the migration mechanism of anammox and denitrifier revealed by CLSM-FISH alleviates the adverse effects of NH2OH, the anammox was inhibited when NH2OH exceeding 15 mg N/L through destroying the inner reduction of NO2–. These results suggested appropriate NH2OH addition favors the synergy between denitrifying and anammox bacteria, providing a promising option for wastewater treatment. © 2024 Elsevier Ltd
Keyword:
Reprint Author's Address:
Email:
Source :
Bioresource Technology
ISSN: 0960-8524
Year: 2025
Volume: 418
1 1 . 4 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: