Indexed by:
Abstract:
Knowledge Graphs (KGs) serve as valuable auxiliary information to improve the accuracy of recommendation systems. Previous methods have leveraged the knowledge graph to enhance item representation and thus achieve excellent performance. However, these approaches heavily rely on high-quality knowledge graphs and learn enhanced representations with the assistance of carefully designed triplets. Furthermore, the emergence of knowledge graphs has led to models that ignore the inherent relationships between items and entities. To address these challenges, we propose a Self-Derived Knowledge Graph Contrastive Learning framework (CL-SDKG) to enhance recommendation systems. Specifically, we employ the variational graph reconstruction technique to estimate the Gaussian distribution of user-item nodes corresponding to the graph neural network aggregation layer. This process generates multiple KGs, referred to as self-derived KGs. The self-derived KG acquires more robust perceptual representations through the consistency of the estimated structure. Besides, the self-derived KG allows models to focus on user-item interactions and reduce the negative impact of miscellaneous dependencies introduced by conventional KGs. Finally, we apply contrastive learning to the self-derived KG to further improve the robustness of CL-SDKG through the traditional KG contrast-enhanced process. We conducted comprehensive experiments on three public datasets, and the results demonstrate that our CL-SDKG outperforms state-of-the-art baselines. © 2024 ACM.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2024
Page: 7571-7580
Language: English
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: