Indexed by:
Abstract:
Bayesian updating reduces epistemic uncertainty for more reliable predictions, but characterizing the distribution of conditional failure probability with measurement data is complex. This study proposes an efficient and accurate method to fully describe the probabilistic characteristics of the updated conditional failure probability. It formulates the first three raw moments of the updated conditional reliability index and uses weighted sparse grid numerical integration to evaluate these moments. A shifted lognormal distribution is then used to approximate the probability density function of the updated conditional reliability index, allowing for the determination of the mean, quantiles, and distribution of the updated conditional failure probability with information reuse. An illustrative example was conducted to demonstrate the method's performance, with results compared against benchmarks from MCMC combined with MCS. © 2024 Proceedings of ISMA 2024 - International Conference on Noise and Vibration Engineering and USD 2024 - International Conference on Uncertainty in Structural Dynamics. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2024
Page: 4302-4313
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: