• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Xiong, Falin (Xiong, Falin.) | Yang, Jiaoxi (Yang, Jiaoxi.) | Guo, Donghai (Guo, Donghai.) | Liu, Wenfu (Liu, Wenfu.) | Fu, Zihan (Fu, Zihan.) | Yang, Feng (Yang, Feng.) | Li, Ran (Li, Ran.) | Liu, Qi (Liu, Qi.) | Li, Huaixue (Li, Huaixue.)

Indexed by:

EI Scopus SCIE

Abstract:

NiFeMo alloy formed using additive manufacturing techniques with high saturation magnetic induction (BS) and low coercivity (HC) are crucial in aerospace applications. In this study, we successfully formed Cu-modified (NiFeMo)100-xCux alloys via in-situ alloying selective laser melting (SLM). The effect of in-situ alloying Cu content on the microstructure and magnetic properties of SLM-formed NiFeMo has been investigated, and efforts have been devoted to developing new technologies for modulating the properties of SLM-formed magnetic materials. The microstructure and magnetic properties of the alloy samples were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), electron backscattering diffraction (EBSD), DC B[sbnd]H hysteresis loop tester (MATS-2010S), and transmission electron microscopy (Titan-G2). The results demonstrate that (NiFeMo)100-xCux alloys possess an FCC γ-(Ni, Fe) solid solution structure within the range of added Cu content in this study. In the central region of the melt pool, columnar crystals grow in the direction of the temperature gradient, and the average grain size (D) decreases gradually with increasing Cu content from in-situ alloying. Cu atoms induced changes in the crystal structure by displacing atoms in the γ-(Ni, Fe) solid solution, resulting in lattice distortion. The (NiFeMo)98Cu2 alloy exhibited an average crystal plane spacing d of about 0.2261 nm along the (11¯1¯) γ-(Ni, Fe) direction and a lattice distortion ∆Ε of about 1.09 %. The saturation magnetic induction varied with increasing Cu additions, exceeding 0.7 T for NiFeMo alloy with Cu additions of 0.8 wt%, 1.1 wt%, and 1.4 wt%. The coercivity generally decreased with increasing Cu content, attaining values below 17 A/m when Cu (x = 0.5 wt%, 0.8 wt%) was added to the NiFeMo alloy. Therefore, controlling the in-situ alloying Cu content within the range of 0.8–1.4 wt% is beneficial for enhancing the soft magnetic performance of the SLM-formed NiFeMo alloy. © 2024 Elsevier Inc.

Keyword:

Crystal lattices Electromagnetic fields Nanocrystallization Crystal growth Saturation magnetization Nickel alloys Single crystals Gadolinium alloys Superconducting films Crystal atomic structure Iron alloys Diamagnetic materials Coercive force Diamagnetism Degaussing Copper alloys Crystal microstructure

Author Community:

  • [ 1 ] [Xiong, Falin]School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Yang, Jiaoxi]School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Guo, Donghai]School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Guo, Donghai]Beijing E-Plus-3D Technology Co., Ltd., Beijing; 102206, China
  • [ 5 ] [Liu, Wenfu]School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Fu, Zihan]School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 7 ] [Yang, Feng]Central Iron and Steel Research Institute, Beijing; 100081, China
  • [ 8 ] [Li, Ran]Central Iron and Steel Research Institute, Beijing; 100081, China
  • [ 9 ] [Liu, Qi]AVIC Manufacturing Technology Institute, Beijing; 100024, China
  • [ 10 ] [Li, Huaixue]AVIC Manufacturing Technology Institute, Beijing; 100024, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

Materials Characterization

ISSN: 1044-5803

Year: 2025

Volume: 220

4 . 7 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 10

Affiliated Colleges:

Online/Total:442/10650350
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.