Indexed by:
Abstract:
This study employs LendingClub data in the field of personal credit risk control as an illustrative case. Various data mining models, and support vector machine, are utilized for training purposes. Additionally, a Stacking model is integrated into the analysis to forecast customer default likelihood. Subsequently, lending decisions are made in accordance with these predictions. The outcomes indicate a reduction in customer default rates compared to scenarios without the application of data mining models, thereby achieving our goal of risk control.
Keyword:
Reprint Author's Address:
Email:
Source :
INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS
ISSN: 0219-4678
Year: 2025
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: