Indexed by:
Abstract:
Developing efficient and stable catalysts for methanol oxidation reaction (MOR) is urgent for economic development and energy scarcity. Herein, platinum (Pt) catalyst was planted on carbon nanotubes crosslinked BiOCl ultrathin nanosheets whose (001) facets enriched with oxygen vacancies. It has been found that he oxygen vacancies not only can enhance the electrical conductivity and the adsorption capability, but also can stabilize Pt due to strong metal-support interaction. The catalyst exhibits a mass activity of 2.39 A mgPt−1, four times higher than that of the benchmark PtC. Moreover, its stability has increased by 54 times compared to PtC. Such a superior electrochemical activity is attributed to the enhancement of OH* adsorption dominantly, which is considered as the catalytically active species. Additionally, the density functional theory calculation is employed to explore the methanol oxidation mechanism with assistant of in-situ Raman test. The valuable formic acid may be produced rather than CO2, which is expected to be applied to direct methanol fuel cells while generating additional economic benefits. © 2025 The Institution of Chemical Engineers
Keyword:
Reprint Author's Address:
Email:
Source :
Process Safety and Environmental Protection
ISSN: 0957-5820
Year: 2025
Volume: 196
7 . 8 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: