• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Li, H. (Li, H..) | Yan, Y. (Yan, Y..) | Jiang, Y. (Jiang, Y..)

Indexed by:

Scopus

Abstract:

Optical microscopy plays a key role in the fields such as biology, medicine, materials science, and precision measurement, providing a powerful tool for exploration in microscales. However, traditional optical microscopy systems are constrained by the diffraction limit, with a maximum resolution of approximately half of wavelength (λ/2). In recent years, super-resolution imaging beyond the diffraction limit has attracted attention in the field of microscopy. Dielectric microsphere lenses have demonstrated the capability to focus the incident light in a narrow region breaking Abbe's diffraction limit with the full width at half maximum of focal spot smaller than λ/2. Microsphere super-resolution imaging demonstrates the advantages prior to other alternative techniques, including the easy-to-use, free of fluorescence labels, real-time imaging, and compatibility with established microscopy systems. It opens up new opportunities in academic research and practical applications. In this review, the principle of microsphere super-resolution imaging was introduced. Subsequently, the key parameters that affect imaging capability were analyzed in details, including microsphere optical properties, environmental suitability, and controllability. Finally, the applications of microsphere super-resolution imaging in biomedicine, semiconductors, and nanomaterials were explored. Furthermore, the major challenges to development of microsphere super-resolution imagining were prospected. © 2025 Beijing University of Technology. All rights reserved.

Keyword:

non-fluorescence nanoscopy photonic nanojet optical nanoimaging super-resolution imaging far-field nanoscopy dielectric microsphere lens

Author Community:

  • [ 1 ] [Li H.]College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Yan Y.]School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Jiang Y.]School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Journal of Beijing University of Technology

ISSN: 0254-0037

Year: 2025

Issue: 1

Volume: 51

Page: 100-120

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:295/10731044
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.