Indexed by:
Abstract:
Control charts, as essential tools in Statistical Process Control (SPC), are frequently used to analyze whether production processes are under control. Most existing control chart recognition methods target fixed-length data, failing to meet the needs of recognizing variable-length control charts in production. This paper proposes a variable-length control chart recognition method based on Sliding Window Method and SE-attention CNN and Bi-LSTM (SECNN-BiLSTM). A cloud-edge integrated recognition system was developed using wireless digital calipers, embedded devices, and cloud computing. Different length control chart data is transformed from one-dimensional to two-dimensional matrices using a sliding window approach and then fed into a deep learning network combining SE-attention CNN and Bi-LSTM. This network, inspired by residual structures, extracts multiple features to build a control chart recognition model. Simulations, the cloud-edge recognition system, and engineering applications demonstrate that this method efficiently and accurately recognizes variable-length control charts, establishing a foundation for more efficient pattern recognition.
Keyword:
Reprint Author's Address:
Email:
Source :
SCIENTIFIC REPORTS
ISSN: 2045-2322
Year: 2025
Issue: 1
Volume: 15
4 . 6 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: