Indexed by:
Abstract:
Enzymes are highly efficient catalysts in nature, governing countless reactions in biological systems. Enzyme-based hydrogels are three-dimensional network materials with enzyme activity, created by loading enzymes into hydrogels or using hydrogels to synthesize polymeric materials. Due to their high biocompatibility, enzyme-based hydrogels exhibit broad application potential in various fields. In recent years, researchers have been continuously exploring new preparation methods to improve the physical, chemical, and biological properties of enzyme-based hydrogels. Additionally, the introduction of materials such as graphene, carbon nanotubes, and metal-organic frameworks (MOFs) has further enhanced the biological activity of these hydrogels. This review summarizes recent preparation methods and structural characteristics of enzyme-based hydrogels, with a focus on their applications in biosensors and medical fields, highlighting the vast application prospects of enzyme-based hydrogels. © 2025 The Author(s)
Keyword:
Reprint Author's Address:
Email:
Source :
Biosensors and Bioelectronics: X
Year: 2025
Volume: 23
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: