Indexed by:
Abstract:
The accumulation of micro/nanoplastics in wastewater significantly hinders denitrification in biological wastewater treatment systems, yet the intrinsic mechanisms are not fully understood. Herein, we combined signal molecule monitoring, electrochemical characterization and multi-omics analysis to investigate how quorum sensing (QS)-mediated microbial interactions influence denitrification in aerobic granular sludge systems. Results showed that after 90-day exposure to micro/nanoplastics, cross-talk between multiple signal molecules significantly declined, thereby disrupting the QS system to opportunely sense changes in the external environment. As a consequence of impaired QS, only 5 species exhibited up-regulation of the genes encoding amino acids and cofactors to sustain cross-feeding, while others, acting as 'cheaters', relied on metabolites offered by cross-feeding but without reciprocating. This imbalance resulted in insufficient availability of metabolites, including redox-active metabolites such as riboflavin, and subsequently deteriorated the denitrification electron transfer process. Compared to the control group, the extracellular electron transfer capacity and denitrification electron transfer chain activity decreased to, respectively, 88.08 % and 63.33 % (microplastics-exposure) and 79.64 % and 63.75 % (nanoplastics-exposure), which directly contributed to the decline in nitrogen removal. Overall, this study provided deeper insights into the denitrification in complex microbial communities under the stress of micro/nanoplastics from the perspective of QS-mediated microbial social behavior. © 2025 Elsevier Ltd
Keyword:
Reprint Author's Address:
Email:
Source :
Water Research
ISSN: 0043-1354
Year: 2025
Volume: 279
1 2 . 8 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: