Indexed by:
Abstract:
Accurate evaluation of groundwater quality and identification of key characteristics are essential for maintaining groundwater resources. The purpose of this study is to strengthen water quality evaluation through the SHAP and XGBoost algorithms, analyze the key indicators affecting water quality in depth, and quantify their impact on groundwater quality through interpretable tools. The XGBoost algorithm shows that zinc (0.183), nitrate (0.159), and chloride (0.136) are the three indicators with the highest weight. The SHAP algorithm shows that zinc (34.62%), nitrate (17.65%), and chloride (16.98%) have higher contribution values, which explains the output results of XGBoost. According to the calculation scores and classification standards of the water quality model, 49% of the groundwater samples in the study area have excellent water quality, 33% of the samples are better, and 18% of the samples are polluted. The results of positive matrix factorization (PMF) show that natural conditions, metal processing, metal smelting and mining, and agricultural activities all cause pollution to groundwater. Zinc, chloride, nitrate, and manganese were the key variables determined by the SHAP algorithm to explain the vast majority of human health risk sources. These findings indicate that interpretable machine learning not only improves the correlation of water quality assessment but also quantifies the judgment basis of each sample and helps to track key pollution indicators.
Keyword:
Reprint Author's Address:
Email:
Source :
WATER
Year: 2025
Issue: 6
Volume: 17
3 . 4 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: