Indexed by:
Abstract:
Numerous non-volatile reconfigurable photonic devices based on phase change materials have been proposed and applied to photonic integrated circuits. However, the unstable states of the devices after crystallization and amorphization excitation in these studies have not been investigated and discussed. In this work, a non-volatile reconfigurable photonic device is fabricated to estimate its stability. Under electrical pulse excitation, the device's output optical power can switch between two states with an extinction ratio of 15 dB. The results reveal that it takes some time for the device to reach a relatively stable state after excitation, and both pulse waveform and ambient temperature affect the stability of the device state. Therefore, it is of great significance to draw attention to improve the practical reliability of non-volatile reconfigurable photonic devices. © 2025 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
Physica B: Condensed Matter
ISSN: 0921-4526
Year: 2025
Volume: 710
2 . 8 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: