• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Han, Qiang (Han, Qiang.) (Scholars:韩强) | Hu, Menghan (Hu, Menghan.) | Xu, Kun (Xu, Kun.) | Du, Xiuli (Du, Xiuli.) (Scholars:杜修力)

Indexed by:

EI Scopus SCIE

Abstract:

The hysteretic capacity of reinforced concrete (RC) structures depends to a large extent on the hysteretic behavior of steel bar to sustain many cycles of high plastic deformations without obvious degradation of strength and stiffness. It is important to develop an accurate and computationally efficient model of steel bar in the nonlinear response analysis of RC structures subjected to cyclic loads. The high strength and ultra-high-strength (UHS, yield strength above 1000 MPa) steel bars are becoming more and more popular in concrete construction, which is beneficial for materials saving and reduction of steel bar congestion. In order to investigate the cyclic behaviors of UHS steel bars and to propose a hysteretic model for this kind of steel bars including buckling, a total of 54 specimens with nine slenderness ratios were carried out under compressive and cyclic loadings. The modified stress-strain curve model of UHS steel bars with different slenderness ratio was developed based on the experimental data, which can take buckling and fatigue-induced reduction of stress into account. This study offers a solid database for researches on the mechanical properties of UHS steel bars. And the proposed empirical model can easily be implemented in the finite element analysis of RC elements with UHS steel bars under cyclic loadings.

Keyword:

Cyclic behavior Buckling Hysteretic model Ultra-high-strength steel bar

Author Community:

  • [ 1 ] [Han, Qiang]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Hu, Menghan]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Xu, Kun]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 韩强

    [Han, Qiang]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

BULLETIN OF EARTHQUAKE ENGINEERING

ISSN: 1570-761X

Year: 2019

Issue: 9

Volume: 17

Page: 5265-5289

4 . 6 0 0

JCR@2022

ESI Discipline: GEOSCIENCES;

ESI HC Threshold:123

JCR Journal Grade:2

Cited Count:

WoS CC Cited Count: 22

SCOPUS Cited Count: 23

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:728/10620301
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.