Indexed by:
Abstract:
In this paper, an Al-Zn-Mg-Cu alloy with a small amount of Er and Zr added was used as the research object. The homogenization annealing was carried out, and the 7N01 aluminum alloy was used at 300 °C, 350 °C, 400 °C, 450 °C and 0.1 s-1, 1 s-1, 10 s-1 deformation conditions by Gleeble-3500 thermal simulator. Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Electron Backscatter Diffraction (EBSD) and Transmission Electron Microscopy (TEM) were used for microstructure analysis. The results show that the stress-strain curve of with Er 7N01 aluminum alloy can be divided into micro-strain stage, uniform deformation stage and steady-state flow stage during the thermal compression process. The flow stress of 7N01 aluminum alloy achieved peaks at the initial stage of strain, and then increased with the increase of strain rate and the decrease of deformation temperature. With the increase of deformation temperature and the decrease of deformation rate, the recrystallization process was significantly increased. © 2020 Trans Tech Publications Ltd, Switzerland.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0255-5476
Year: 2020
Volume: 993 MSF
Page: 294-298
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 14
Affiliated Colleges: