• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Zhuozheng (Wang, Zhuozheng.) | Dong, Yingjie (Dong, Yingjie.) | Liu, Wei (Liu, Wei.)

Indexed by:

EI

Abstract:

The reliability of chiller is very important for the safe operation of refrigeration system. In order to solve the problem that the traditional linear discriminant analysis (LDA) based on L2 norm is sensitive to outliers, this paper introduced a novel dimensionality reduction algorithm for chiller fault data set - RSLDA. Firstly., L2, 1 norm is used to extract the most discriminant features adaptively and eliminate the redundant features instead of L2 norm. Secondly, an orthogonal matrix and a sparse matrix are introduced to ensure the extracted features contain the main energy of the raw features. In addition., the recognition rate of the nearest classifier is defined as the performance criteria to evaluate the effectiveness of dimensionality reduction. Finally., the reliability of algorithm was verified by experiences compared with other algorithms. Experimental results revealed that RSLDA not only improves robustness but also has a good performance in the Small Sample Size problem (SSS) of fault classification. © 2019 IEEE.

Keyword:

Silicon compounds Water cooling systems Refrigeration Discriminant analysis Matrix algebra Dimensionality reduction

Author Community:

  • [ 1 ] [Wang, Zhuozheng]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Wang, Zhuozheng]Intelligent Signal Processing Laboratory, Beijing, University of Technology, Beijing, China
  • [ 3 ] [Dong, Yingjie]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 4 ] [Dong, Yingjie]Intelligent Signal Processing Laboratory, Beijing, University of Technology, Beijing, China
  • [ 5 ] [Liu, Wei]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 6 ] [Liu, Wei]Intelligent Signal Processing Laboratory, Beijing, University of Technology, Beijing, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

Year: 2019

Page: 1333-1341

Language: English

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:719/10696408
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.