Indexed by:
Abstract:
The microstructure and creep behaviors of cast Mg-xZn-yEr (x=3,6,9 wt.%, x/y=6) alloys were investigated by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). XRD results indicated that the main phase compositions of as-cast Mg-xZn-yEr alloys were the icosahedral quasicrystalline phase (I-phase) and α-Mg solid solution. The I-phase mainly distributed in the dendritic and staccato strips. The creep tests were conducted under the condition of 448 K, 70 MPa for 100 h. As the addition of Er increased from 0.5 wt.% to 1.5 wt.%, the total creep strain decreased from 0.962% to 0.512%, and the steady state creep rate decreased from 1.411×10-8s-1 to 4.917×10-9s-1. The I-phase had a tendency to be bulky and continuous, as the volume fraction of Er element increased. Ascribed to the I-phase, the creep strain happened and effectively blocked the movement of dislocations, resulting in the strengthened as-cast Mg-Zn-Er alloys and improved creep resistance. Based on the investigation of creep behaviors, the creep mechanism of the as-cast alloy was mainly grain boundary slipping. © 2017 Trans Tech Publications, Switzerland.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0255-5476
Year: 2017
Volume: 898 MSF
Page: 305-310
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6