• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Qiu, Changyan (Qiu, Changyan.) | Cai, Yiheng (Cai, Yiheng.) | Gao, Xurong (Gao, Xurong.) | Cui, Yize (Cui, Yize.)

Indexed by:

EI Scopus

Abstract:

Recent years CNN (Convolutional Neural Network) has performed well in image processing, including image retrieval. However, since the features of CNN extraction are usually high-dimensional, and in the massive data conditions, it is a rather time-consuming process to traverse all the images and calculate the distance between the feature vectors to accurately find the closest Top K images. The proposed paper uses an effective deep learning framework in which Deep Convolution Network is combined with Hash Coding to learn rich medical image representing through CNN. First, a hash layer is added to the network to represent the image information as binary hashing codes; Simultaneously, the dimension of feature vector is effectively reduced by the framework; then, In order to improve the accuracy of image retrieval, rough searching and fine searching are combined. The experimental results show that our method is optimal than several hashing algorithms and CNN methods on the TCIA-CT database and VIA/I-ELCAP database. © 2017 IEEE.

Keyword:

Image coding Biomedical engineering Medical imaging Network coding Computerized tomography Image enhancement Image retrieval Convolutional neural networks Hash functions Convolution Deep learning

Author Community:

  • [ 1 ] [Qiu, Changyan]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Cai, Yiheng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Gao, Xurong]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Cui, Yize]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

Year: 2017

Volume: 2018-January

Page: 1-6

Language: English

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 10

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 32

Online/Total:502/10642574
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.