Indexed by:
Abstract:
Vickers hardness and electric conductivity measurements as well as micro-structure analysis were used to investigate the effects of trace element Hf atoms on the precipitation and recrystallization resistance in Al-Er-Zr alloys. The results of the present study indicated that the behaviors of precipitation process in Al-0.04Er-0.08Zr and Al-0.04Er-0.08Zr-0.05Hf (at. %) alloys are similar. When alloys were annealed at 350 °C for 96h, the nano-scale and coherent Al3(Er, Zr) and Al3(Er, Zr, Hf) precipitates form, corresponding to the peak hardness values of 56.2 ± 0.9 (ternary alloy), 58.9 ± 1.5 HV (quaternary alloy), respectively. The higher peak hardness in Al-0.04Er-0.08Zr-0.05Hf alloys mainly benefit from the decomposition of Hf. It was shown that the existence of precipitates could improve the recrystallization resistance obviously. Due to the similar retarding force, recrystallization temperatures of both alloys are almost the same, approximate 450 °C. © 2017 Trans Tech Publications, Switzerland.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0255-5476
Year: 2017
Volume: 898 MSF
Page: 3-8
Language: English
Cited Count:
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: