Indexed by:
Abstract:
Trusted computing provides an efficient and practical way out for system security problems based on a trusted hardware, namely the root of trust, e.g., Trusted Platform Module (TPM), Trusted Cryptographic Module (TCM), Trusted Platform Control Module (TPCM), so on and so forth. However, current applications calling for trusted functions have to use either the user-space trusted interfaces (e.g., Trusted Software Stack (TSS) API) or to implement customized APIs on top of the trusted hardware driver; both of them are well known of steep learning curve, which indicates error prone and low-efficient development and complex maintenance for the application of trusted software. This paper presents a new trusted encapsulation architecture and the proof of-concept system with the aim to mitigate the gap between the current obscure trusted APIs and the actual trusted applications for trusted software development. Our system can provide high-level and much simplified trusted transaction interfaces for user applications, which can rapidly reduce the development and maintenance work for the developers and users without too much performance costs. We also present a secure remote login use-case using mainly the binding and unbinding trusted functions of our trusted encapsulation architecture. © Springer International Publishing Switzerland 2016.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2016
Volume: 9565
Page: 153-168
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: