Indexed by:
Abstract:
This paper introduces a new idea for interaction between human and wearable device which is using finger-fist posture to be the detecting and tracking target. We built the detector with cascade classier using Haar-like features and the AdaBoost learning algorithm. The detector for the posture shows good tolerance for out-of-plane rotation and robustness against lighting variance and cluster background. With excellent real-time performance and high recognition accuracy, the detection can be acted as a tracker to track the path of fist in the first-person view. © 2014 TCCT, CAA.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1934-1768
Year: 2014
Page: 4920-4923
Language: English
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: