Indexed by:
Abstract:
In this paper, we propose a nonparametric independence screening method for sparse ultra-high dimensional generalized varying coefficient models with longitudinal data. Our methods combine the ideas of sure independence screening (SIS) in sparse ultrahigh dimensional generalized linear models and varying coefficient models with the marginal generalized estimating equation (GEE) method, called NIS-GEE, considering both the marginal correlation between response and covariates, and the subject correlation for variable screening. The corresponding iterative algorithm is introduced to enhance the performance of the proposed NIS-GEE method. Furthermore it is shown that, under some regularity conditions, the proposed NIS-GEE method enjoys the sure screening properties. Simulation studies and a real data analysis are used to assess the performance of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF MULTIVARIATE ANALYSIS
ISSN: 0047-259X
Year: 2019
Volume: 171
Page: 37-52
1 . 6 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:54
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: