Indexed by:
Abstract:
In practice, it is not uncommon to encounter the situation that a discrete response is related to both a functional random variable and multiple real-value random variables whose impact on the response is nonlinear. In this paper, we consider the generalized partial functional linear additive models (GPFLAM) and present the estimation procedure. In GPFLAM, the nonparametric functions are approximated by polynomial splines and the infinite slope function is estimated based on the principal component basis function approximations. We obtain the estimator by maximizing the quasi-likelihood function. We investigate the finite sample properties of the estimation procedure via Monte Carlo simulation studies and illustrate our proposed model by a real data analysis.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF APPLIED STATISTICS
ISSN: 0266-4763
Year: 2019
Issue: 5
Volume: 46
Page: 914-925
1 . 5 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:54
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: