• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Huang, Xing (Huang, Xing.) | Li, Shining (Li, Shining.) | Qiu, Wenge (Qiu, Wenge.) (Scholars:邱文革) | Chen, Yun (Chen, Yun.) | Cheng, Jie (Cheng, Jie.) | Sun, Yanming (Sun, Yanming.) | Bai, Guangmei (Bai, Guangmei.) | Song, Liyun (Song, Liyun.) | Zhang, Guizhen (Zhang, Guizhen.) | He, Hong (He, Hong.) (Scholars:何洪)

Indexed by:

Scopus SCIE

Abstract:

In the present study, a series of CeO2/TiO2 catalysts were fabricated by dry ball milling method in the absence and presence of organic assistants, and their catalytic performances for the selective catalytic reduction (SCR) of NO by NH3 were investigated. It was found that the addition of organic assistants in the ball milling process and the calcining ambience exerted a significant influence on the catalytic performances of CeO2/TiO2 catalysts. The nitrogen sorption isotherm measurement (BET), powder X-ray diffraction (XRD), Raman spectra, high-resolution transmission electron microscopy (HR-TEM), hydrogen temperature-programmed reduction (H-2-TPR), ammonia temperature-programmed desorption (NH3-TPD), sulfur dioxide temperature-programmed desorption (SO2-TPD), thermogravimetric analysis (TG), Fourier transform infrared (FT-IR) and X-ray photoelectron spectra (XPS) characterizations showed that the introduction of citric acid in the ball milling process could significantly change the decomposition process of the precursor mixture, which can lead to improved dispersion and reducibility of cerium species, surface acidity as well as the surface microstructure, all which were responsible for the high low temperature activity of CeTi-C-N in an NH3-SCR reaction. In contrast, the addition of sucrose in the milling process showed an inhibitory effect on the catalytic performance of CeO2/TiO2 catalyst in an NH3-SCR reaction, possibly due to the decrease of the crystallinity of the TiO2 support and the carbon residue covering the active sites.

Keyword:

ceria-based catalysts selective catalytic reduction (SCR) organic assistant ball milling

Author Community:

  • [ 1 ] [Huang, Xing]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control,Dept Chem, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Shining]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control,Dept Chem, Beijing 100124, Peoples R China
  • [ 3 ] [Qiu, Wenge]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control,Dept Chem, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Yun]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control,Dept Chem, Beijing 100124, Peoples R China
  • [ 5 ] [Cheng, Jie]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control,Dept Chem, Beijing 100124, Peoples R China
  • [ 6 ] [Sun, Yanming]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control,Dept Chem, Beijing 100124, Peoples R China
  • [ 7 ] [Bai, Guangmei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control,Dept Chem, Beijing 100124, Peoples R China
  • [ 8 ] [Song, Liyun]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control,Dept Chem, Beijing 100124, Peoples R China
  • [ 9 ] [Zhang, Guizhen]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control,Dept Chem, Beijing 100124, Peoples R China
  • [ 10 ] [He, Hong]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control,Dept Chem, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 邱文革 何洪

    [Qiu, Wenge]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control,Dept Chem, Beijing 100124, Peoples R China;;[He, Hong]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control,Dept Chem, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

CATALYSTS

ISSN: 2073-4344

Year: 2019

Issue: 4

Volume: 9

3 . 9 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:166

JCR Journal Grade:2

Cited Count:

WoS CC Cited Count: 9

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:1076/10666251
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.