Indexed by:
Abstract:
Skilled welders can estimate and control the weld penetration based on weld pool observation. This implies that an advanced control system could be developed to control the penetration by emulating the decision making process of the human welder. In this paper a nonlinear dynamic model is established to correlate the process inputs (welding current and traveling speed) and weld penetration in Gas Tungsten Arc Welding (GTAW). An innovative 3D vision sensing system capable of measuring the weld pool characteristic parameters in real-time is utilized. Dynamic experiments are conducted under various welding conditions. Dynamic linear model is first constructed and the results are analyzed. The linear model is then improved by incorporating a nonlinear operating point modeled by Adaptive Neuro Fuzzy Inference System (ANFIS). It is found that the penetration state can be better modeled by the proposed ANFIS model. © (2013) Trans Tech Publications, Switzerland.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1022-6680
Year: 2013
Volume: 658
Page: 292-297
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: