Indexed by:
Abstract:
A generalized quasi-steady and one-dimensional model for predicting the frost growth on flat plate was proposed based on the previous theoretical models. To improve the predicting ability of the current model, a modified semi-empirical correlation for calculating initial condition of frost density was presented experimentally. The experiments were conducted in a suction-type open-loop wind tunnel under a series of experimental conditions: air temperature -8°C to 19°C, humidity 42% to 80%, velocity 5m/s and the temperature of cold plate -16°C to -8°C. The numerical results of frost thickness, frost density, frost surface temperature and heat flux rate were compared to the experimental data. The simulation results were found agree with the experimental results in a maximum error of 10%. The presented model was further validated by comparing with the previous published experimental data in a wide range of frosting conditions. It was found that the presented model was a simple but universal one to predict the frost growth on cold flat plate. © 2010 by ASME.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2010
Volume: 4
Page: 463-472
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: