Indexed by:
Abstract:
Quantum key agreement (QKA) allows participants to establish a shared key over a quantum channel, and no one of the participants can determine the shared key alone. Actually, particles are usually affected by noise during transmission in the quantum channel, and an aggressor can launch a baleful attack under the cover of noise. In this paper, based on logical Bell states, we propose two robust two-party QKA protocols immune to collective-dephasing noise and collective-rotation noise, respectively. The measurement correlation of quantum entanglement is utilized to establish a shared key. The proposed protocols are globally better in terms of quantum resource cost and qubit efficiency than existing two-party QKA protocols against collective noise. The security analysis demonstrates that they can resist common insider and outsider attacks.
Keyword:
Reprint Author's Address:
Email:
Source :
QUANTUM INFORMATION PROCESSING
ISSN: 1570-0755
Year: 2019
Issue: 3
Volume: 18
2 . 5 0 0
JCR@2022
ESI Discipline: PHYSICS;
ESI HC Threshold:123
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 24
SCOPUS Cited Count: 25
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: