Indexed by:
Abstract:
Most pattern recognition methods used in condition diagnosis of rotating machinery are studied that the sufficient samples are available. However, it is hard to obtain sufficient fault samples in practice. Support vector machine (SVM) can solve the learning problem with a small number of samples. This paper presents a condition diagnosis method for a centrifugal blower using a multi-class classification technique, such as SVM to identify fault types. The statistic feature parameters are also acquired in the frequency domain for classification purposes, and those parameters can reflect the characteristics of vibration signals. The effectiveness of the method is verified by the application to the condition diagnosis for a centrifugal blower. The result shows that the multi-class SVM produces promising results and has the potential for use in fault diagnosis of rotating machinery.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2010
Page: 199-204
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: