• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Du (Wang, Du.) | Ji, Changwei (Ji, Changwei.) (Scholars:纪常伟) | Wang, Shuofeng (Wang, Shuofeng.) | Yang, Jinxin (Yang, Jinxin.) | Tang, Chuanqi (Tang, Chuanqi.)

Indexed by:

EI Scopus SCIE

Abstract:

The influences of wall are important in practical combustion devices. In present study, the propagating processes of near wall ignited laminar methane/hydrogen/air flame were explored under different hydrogen fractions in a constant volume combustion vessel mimicking engine geometry. Results showed that both effects of heat losses and wall compression cause difference of local flame speed at different directions. The flow inside burned zone induced by compression accelerates local flame speed at direction opposing to the wall, makes the local flame speed higher than freely propagating laminar flame speed. Meanwhile, flame shape changing process was quantified by fitted ellipses. It was found that flame shapes are strongly affected by the wall compression but not obviously influenced by hydrogen addition. Hydrogen addition exacerbated flame instabilities, notably improved the local and global flame speeds due to both increase of laminar flame speed and flow velocity inside burned zone. The maximum local speed increase from 258 cm/s for 20% hydrogen fraction to 695 cm/s for 80% hydrogen fraction. Maximum combustion pressure and maximum pressure rise rate were slightly increased by hydrogen addition. On contrary, the combustion duration notably decreased nearly 3 times when hydrogen fraction increased from 20% to 80%. (C) 2018 Elsevier Ltd. All rights reserved.

Keyword:

Combustion Flame Laminar Hydrogen Methane Wall effect

Author Community:

  • [ 1 ] [Ji, Changwei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 2 ] [Ji, Changwei]Beijing Univ Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 纪常伟

    [Ji, Changwei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ENERGY

ISSN: 0360-5442

Year: 2019

Volume: 168

Page: 1094-1103

9 . 0 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:136

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 24

SCOPUS Cited Count: 26

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Online/Total:853/10801274
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.