Indexed by:
Abstract:
Evolutionary Algorithm (EA) is a population-based metaheuristic technique to effectively solve Multiobjective Optimization Problem (MOP). However, it is still an active research topic how to improve the performance of MOEA algorithms. In this paper, we present a new FOPF algorithm, which can alleviate MOEA's disadvantage on time performance. First, a fast obtaining Pareto front approach with less computation cost is proposed, then an expand approach and a limited crossover procedure are employed to keep the diversity of solutions. Experimental results on four test problems show that the FOPF algorithm is able to find solutions with good diversity, which are near the true Parato-optimal front, and improves significantly time performance compared to the known NSGA2. © 2009 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2009
Volume: 4
Page: 563-568
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6