Indexed by:
Abstract:
This study investigated the characteristics and strength of the dissimilar joints between carbon fiber reinforced plastic (CFRP) epoxy composites and aluminum alloys using two different heating methods, Ni/Al reactive multilayer films (RMF) and a low power continuous wave diode laser. To enhance the adhesion, the top resin layer of the CFRP and the surface of the aluminum alloy were patterned by femtosecond laser. Polycarbonate (PC) was used as a filler material during the joining processes. ANSYS simulation was applied to elucidate the thermal kinetics of the self-propagation reaction and the thermal profile, and evaluate the possibility of joining CFRP to aluminum using Ni/Al RMFs. The SEM image of the cross-section shows that melted PC flowed into the CFRP-aluminum alloy interface, suggesting strong mechanical bonding. A tensile strength of 9.5 MPa was reached using Ni/Al multilayers as heat sources, which provides a new way for joining CFRPs and aluminum alloys in space or under water.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED SCIENCES-BASEL
ISSN: 2076-3417
Year: 2019
Issue: 2
Volume: 9
2 . 7 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:136
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 14
SCOPUS Cited Count: 14
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: