Indexed by:
Abstract:
In this paper, a tabu based neural network learning algorithm (TBBP) is represented to improve the function approximation ability of neural networks to nonlinear functions. By using the tabu search during the search process in the global area, the algorithm can escape from the local optimal solution and get a superior global optimization for the neural networks. The TBBP is tested in 6 different nonlinear functions. It is compared with the standard BP algorithm. The results show that the tabu search has improved the ability of the approximating ability of the neural networks. © 2006 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2006
Volume: 1
Page: 2998-3003
Language: Chinese
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9