Indexed by:
Abstract:
With the accumulating of the strong earthquakes records, it becomes practicable to achieve the more accurate attenuation relationships. Based on the seismic records of West American, the Radial Basis Function (RBF) and Back Propagation (BP) artificial neural networks model are respectively constructed for three-dimensional seismic parameters attenuation relationship. The RBF model is nice fitting for the training data, although it has great errors on other tested points. While the BP model is not good than the RBF model for the training data, it possesses a better consecutive property in the whole area. It is a proper neural network model for the problem. After training with the selected records, the Neural Networks (NN) shows a good fitting with the training records. And it is easy to construct three-dimensional model to predict the attenuation relationship. In order to demonstrate the efficiency of the presented methodology, the contrast is discussed for the results of the BP model and three typical traditional attenuation formulae. © Springer-Verlag Berlin Heidelberg 2006.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2006
Volume: 3973 LNCS
Page: 1223-1230
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: