Indexed by:
Abstract:
Most multi-objective particle swarm optimization algorithms, which have demonstrated their good performance on various practical problems involving two or three objectives, face significant challenges in complex problems. For overcoming this challenges, a multi-objective particle swarm optimization algorithm based on enhanced selection(ESMOPSO) is proposed. In order to increase the ability of exploration and exploitation, enhanced selection strategy is designed to update personal optimal particles, and objective function weighting is used to update global optimal particle adaptively. In addition, R2 indicator is incorporated into the achievement scalarizing function to layer particles in archive, which promotes the archive update. Besides, Gaussian mutation strategy is designed to avoid particles falling into local optimum, and polynomial mutation is applied in archive to increase the diversity of elite solutions. The performance of the proposed algorithm is validated and compared with some state-of-the-art algorithms on a number of test problems. Experimental results demonstrate that ESMOPSO algorithm shows very competitive performance when dealing with complex MOPs.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE ACCESS
ISSN: 2169-3536
Year: 2019
Volume: 7
Page: 168091-168103
3 . 9 0 0
JCR@2022
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 15
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: