Indexed by:
Abstract:
A CNN-LSTM model-based short text sentiment classification method was proposed to effectively obtain the implicit semantic information of short text reviews. The convolutional neural network (CNN) model was used to automatically learn the semantic feature by setting different sizes of convolution windows. The long short-term memory (LSTM) neural network model was used to predict the sentimental label of the short text. The performance of the model was evaluated on three different short text review data sets. The F1 value of the positive and negative data in NLPCC is 0.768 3 and 0.772 4, respectively (better than the best NLPCC evaluation result). Compared with the traditional machine learning classification model, t-test results show that the performance is improved significantly. © 2019, Editorial Department of Journal of Beijing University of Technology. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Beijing University of Technology
ISSN: 0254-0037
Year: 2019
Issue: 7
Volume: 45
Page: 662-670
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 17
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: