• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Han, Hong-Gui (Han, Hong-Gui.) (Scholars:韩红桂) | Guo, Ya-Nan (Guo, Ya-Nan.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (Scholars:乔俊飞)

Indexed by:

Scopus SCIE

Abstract:

In this paper, an efficient self-organizing recurrent radial basis function neural network (RRBFNN), is developed for nonlinear system modeling. In RRBFNN, a two-steps learning approach is introduced during the learning process. In the first step, the objective is to find the optimal set of parameters using an improved Levenberg-Marquardt (LM) algorithm. In the second step, an efficient information-oriented algorithm (IOA), without any thresholds, is developed to optimize the structure of RRBFNN. The hidden neurons in this IOA-based RRBFNN (IOA-RRBFNN) are generated or pruned automatically to reduce the computational complexity and improve the generalization power. Meanwhile, a theoretical analysis on the learning convergence of IOA-RRBFNN is given in details. To demonstrate the merits of IOA-RRBFNN for modeling nonlinear systems, several benchmark problems and a real world application are present with comparisons against other existing methods. Some promising results are reported in this study, indicating that the proposed IOA-RRBFNN performs prediction accuracy in the case of fast learning speed and compact structure. (C) 2017 Elsevier B.V. All rights reserved.

Keyword:

Improved Levenberg-Marquardt algorithm Information-oriented algorithm Nonlinear system modeling Recurrent radial basis function neural network

Author Community:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Ya-Nan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Han, Hong-Gui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Guo, Ya-Nan]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao, Jun-Fei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Han, Hong-Gui]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 8 ] [Guo, Ya-Nan]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 9 ] [Qiao, Jun-Fei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

Reprint Author's Address:

  • 韩红桂

    [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

APPLIED SOFT COMPUTING

ISSN: 1568-4946

Year: 2018

Volume: 71

Page: 1105-1116

8 . 7 0 0

JCR@2022

ESI Discipline: COMPUTER SCIENCE;

ESI HC Threshold:161

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 24

SCOPUS Cited Count: 27

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Online/Total:575/10712831
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.