Indexed by:
Abstract:
In this paper, a novel incremental radial basis function (RBF) neural network is proposed for nonlinear systems modeling. The hidden layer is constructed dynamically on the basis of the neuronal activity (NA), which is measured by the local field potential (LFP) and the average firing rate (AFR), with the goal of enhancing the structural compactness. Simultaneously, a modified second-order algorithm is utilized to tram the neuronal activity-based RBF (NARBF) neural network, which can decrease the convergence time and improve the generalization performance. Then, three benchmark nonlinear system modeling simulations are employed to evaluate the proposed NARBF neural network, indicating that the proposed neural network can obtain good generalization performance with a compact structure after fast training. Finally, the NARBF neural network is applied to wastewater treatment process modeling, which demonstrates that the proposed algorithm can predict the key water quality variable precisely.
Keyword:
Reprint Author's Address:
Source :
NEUROCOMPUTING
ISSN: 0925-2312
Year: 2018
Volume: 302
Page: 1-11
6 . 0 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:161
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 36
SCOPUS Cited Count: 49
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: