Indexed by:
Abstract:
A new computational methodology is proposed for fatigue life prediction of notched components subjected to variable amplitude multiaxial loading. In the proposed methodology, an estimation method of non-proportionality factor (F) proposed by authors in the case of constant amplitude multiaxial loading is extended and applied to variable amplitude multiaxial loading by using Wang-Brown's reversal counting approach. The pseudo stress correction method integrated with linear elastic finite element analysis is utilized to calculate the local elastic-plastic stress and strain responses at the notch root. For whole local strain history, the plane with weight-averaged maximum shear strain range is defined as the critical plane in this study. Based on the defined critical plane, a multiaxial fatigue damage model combined with Miner's linear cumulative damage law is used to predict fatigue life. The experimentally obtained fatigue data for 7050-T7451 aluminium alloy notched shaft specimens under constant and variable amplitude multiaxial loadings are used to verify the proposed methodology and equivalent strain-based methodology. The results show that the proposed methodology is superior to equivalent strain-based methodology. Fatigue life prediction method is proposed for notched components under multiaxial variable amplitude loading. Pseudo stress correction approach by FE analysis is extended to determine local stress- strain increments.
Keyword:
Reprint Author's Address:
Email:
Source :
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES
ISSN: 8756-758X
Year: 2018
Issue: 8
Volume: 41
Page: 1674-1690
3 . 7 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:260
Cited Count:
WoS CC Cited Count: 18
SCOPUS Cited Count: 20
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: