Indexed by:
Abstract:
E-mail messages can be modeled as semi-structured documents that consist of a set of classes and a number of variable length free-text. Thus, many text mining techniques can be used to develop a personal e-mail filtering and management system. This paper addresses a text mining agents based architecture, in which two kinds of text mining agents: USPC (uncertainty sampling based probabilistic classifier) and R2L (rough relation learning) are used cooperatively, for personal e-mail filtering and management. © Springer-Verlag Berlin Heidelberg 2002.
Keyword:
Reprint Author's Address:
Email:
Source :
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN: 0302-9743
Year: 2002
Volume: 2412
Page: 329-336
Language: English
JCR Journal Grade:3
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8