Indexed by:
Abstract:
The corrosion behaviors of the Ti-based bulk metallic glasses (Zr30.88Ti33.57Cu7Ni5.39Be23.16) as well as the in-situ Ti-based bulk metallic glass matrix composites (Zr28.92Ti42.22Cu6.57Nb6Be16.29) in 0.6 mol/L NaCI, 1 mol/L HCI and 0.5 mol/L H2SO4 solutions were analyzed. The potentiodynamic polarization analyses indicated a drastic increase in the current densities for all specimens in the NaCI and HCI solutions, which could be related to the passive breakdown caused by pitting corrosion. In contrast, no active-passive transition existed in the H2SO4 solution. SEM and EDS analyses were performed to clarify the morphologies and chemical states of the elements prior to and following electrochemical testing. The results demonstrated that both alloys exhibited entirely different corrosion behaviors in the chloride-containing and chloride-free solutions. The surfaces of the samples were locally damaged by a chloride-induced pitting process. Specifically for the composites, a selective dissolution occurred. In contrast, a low portion of corrosion occurred within the chloride-free media. The chemical compositions were identified as the main factor to affect the corrosion performance of the alloys. (C) 2018 Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF ALLOYS AND COMPOUNDS
ISSN: 0925-8388
Year: 2018
Volume: 750
Page: 757-764
6 . 2 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:260
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 22
SCOPUS Cited Count: 24
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: