Indexed by:
Abstract:
Recently, great efforts have been devoted to designing and fabricating flexible, lightweight, wearable, and miniaturized supercapacitors. At the same time, the exploration of green, renewable, and biocompatible energy-storage materials has been attracting intensive attention. By taking fabrication and configuration design into consideration, the naturally derivable juglone molecule was exploited as an active charge-storage material, and integrated into flexible and micro-supercapacitor devices. The polypyrrole/juglone-composite-based supercapacitors exhibit significant energy-storage capabilities with high specific capacitance and long cyclability, which are comparable to that of conventional electrode materials. This study presents a new way for developing flexible, lightweight, portable, and/or wearable electronic devices with biocompatible and environmentally friendly attributes.
Keyword:
Reprint Author's Address:
Source :
CHEMPLUSCHEM
ISSN: 2192-6506
Year: 2018
Issue: 5
Volume: 83
Page: 423-430
3 . 4 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:192
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: