Indexed by:
Abstract:
Permanent magnetic nanocrystalline Sm5Co19Hf0.4 alloy and Sm5Co19Hf0.4CNTs0.4 alloy with high room-temperature coercivity were prepared. The microstructure, crystal structure and magnetic properties were studied. The results show that the mixed doping of Hf elements and CNTs does not lead to phase decomposition of Ce5Co19 type structure, while it results in fine grains and uniform distribution of the microstructure. Energy Dispersive X-ray Spectrometry (EDX) analyses confirm that CNTs move into grain boundaries of the nanocrystalline Sm5Co19Hf0.4CNTs0.4 alloy, which can improve the coercivity of the nanocrystalline Sm5Co19 alloy for the grain boundary pinning effect. Rietyeld refinement show that Hf comes into the Sm vacancy, thus decreasing the lattice parameters and increasing the axial ratio c/a, which further enhance the magnetocrystalline anisotropy, and strengthen the coercivity of nanocrystalline alloy. The results of the study can promote the design of Sm-Co alloy with high magnetocrystalline anisotropy and intrinsic coercivity.
Keyword:
Reprint Author's Address:
Email:
Source :
RARE METAL MATERIALS AND ENGINEERING
ISSN: 1002-185X
Year: 2018
Issue: 3
Volume: 47
Page: 1001-1006
0 . 7 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:260
JCR Journal Grade:4
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: