Indexed by:
Abstract:
User profiling is one of the key issues in personalized recommendation systems. A content curation social network is a content-centric network; it encourages users to repin items from other users and other websites. It further permits users to arrange the pins according to their interests. It is therefore possible to estimate user interest from the pins. In this paper, we propose a user profiling approach to combining topic model and pointwise mutual information (TM-PMI). We first extract a pin’s description, and then apply latent Dirichlet allocation (LDA, one of the topic modeling schemes). A three-layer hierarchical Bayesian model of user-topic-word is thus obtained. Then, a personal model is obtained by selecting a set of correlated words with constraints of word probability and PMI. The experimental results confirm the efficiency of the proposed approach. © Springer International Publishing Switzerland 2016.
Keyword:
Reprint Author's Address:
Email:
Source :
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN: 0302-9743
Year: 2016
Volume: 9517
Page: 152-161
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: