Indexed by:
Abstract:
On the top of TiO2 nanotube arrays, nanograss structure may be generated due to electrolyte composition, the oxidizing condition and the size of nanotube in anodic oxidation process. TiO2 nanoring/nanotube hierarchical structure with smooth surface was fabricated by two-step anodic oxidation. Growth mechanism and optical absorption properties of the resulting TiO2 nanoring/nanotube hierarchical structure were investigated by controlling oxidation time of the anodic oxidation. The results show that the growth of nanotubes is limited by regular hexagonal nanocaves on the surface of Ti substrate during the second step of anodization resulting in formation of TiO2 nanoring/nanotube hierarchical structure. Meanwhile, the nanorings provide the support of their internal nanotubes to avoid formation of nanograss structure. Absorption spectrum of TiO2 nanoring/nanotube hierarchical structure exhibits oscillating peaks in visible light region, due to the interference between lights reflected from the top of nanorings and the bottom of Ti substrate. Based on the relationship between oscillation peaks shape and film thickness, the maximum optical penetration depth of TiO2 nanoring/nanotube hierarchical structure is estimated to be similar to 2 mu m.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF INORGANIC MATERIALS
ISSN: 1000-324X
Year: 2017
Issue: 12
Volume: 32
Page: 1327-1331
1 . 7 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:287
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: